## An agreement on the quaternary oscillation of ultraviolet absorption changes accompanying the water splitting in isolated Photosystem II complexes from the cyanobacterium *Synechococcus* sp.

H. Kretschmann, J.P. Dekker \*, Ö. Saygin \*\* und H.T. Witt

Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, Berlin (Germany)

(Received 17 November 1987)

Key words: Photosynthesis; Manganese; Photosystem II; Water splitting; Oscillation, quaternary; (Cyanobacterium)

Authors of controversial publications with regard to the S-transition spectra of the water-splitting enzyme system S together reinvestigated the transitions in isolated *Synechococcus* Photosystem II complexes. It is confirmed that the spectrum of the  $S_0-S_1$  transition is different from the spectra of the  $S_1-S_2$  and  $S_2-S_3$  transitions: at 355 nm, the  $S_0-S_1$  transition is more than three times smaller. The  $S_0-S_1$  transition is possibly due to an  $Mn(II) \rightarrow Mn(III)$  change, the latter ones due to  $Mn(III) \rightarrow Mn(IV)$  changes.

During water splitting in photosynthesis four oxidation states,  $S_0$ – $S_4$ , are engaged in one turnover of the water-splitting enzyme system 'S' [1]. The transitions between the different S states which are created successively through four turnovers of the photocenter Chl- $a_{II}$  (P-680) are accompanied by absorbance changes in the ultraviolet [2]. Several attempts have been made to describe the absorption changes of the individual S-state transitions quantitatively [3–10], but different results were obtained. The discrepancies are mainly due to the different ways of correcting for binary oscillations from the acceptor side of PS II,

Correspondence: H.T. Witt, Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 1000 Berlin 12, Germany. the interpretation of absorbance changes caused by the 1st flash in dark-adapted preparations, and the deconvolution procedure for the S states overlapping one another. The absorbance difference spectra of the  $S_1 \rightarrow S_2$  and  $S_2 \rightarrow S_3$  transitions are characterized by a broad absorbance increase in the ultraviolet and are presumably caused by the oxidation of one Mn(III) to Mn(IV) [3,10]. Dekker et al. concluded from their experiments that in spinach membrane fragments also the  $S_0 \rightarrow S_1$ transition gives rise to very similar absorbance changes and, therefore, attributed also this transition to an Mn(III)/Mn(IV) valence change (reviewed in Ref. 8). Saygin and Witt [9,10], using highly active PS II preparations from the thermophilic cyanobacterium Synechococcus sp., also observed the similarity of absorbance changes by the  $S_1 \rightarrow S_2$  and  $S_2 \rightarrow S_3$  transitions, but obtained rather strong evidence for a different contribution upon the  $S_0 \rightarrow S_1$  transition. This evidence is based on experiments in the absence and presence of low concentrations of hydroxylamine; in the latter case the O<sub>2</sub> evolution is shifted backwards by two

<sup>\*</sup> Present address: Department of Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A.

<sup>\*\*</sup> Present address: Bogazici University, Institute of Environmental Sciences, P.K. 2 Bebek, Istanbul, Turkey.

Abbreviations: Chl, chlorophyll; PS II, Photosystem II; Mes, 4-morpholineethanesulphonic acid; UV, ultraviolet.

The aim of this contribution is the reinvestigation, by all the authors of the controversial publications with regard to the  $S_0 \rightarrow S_1$  transition spectrum (see Refs. 4 and 10, respectively), of the oscillation patterns under normal, oxygen-evolving conditions (i.e., in the absence of hydroxylamine) on the same object (Synechococcus PS II complex). It is confirmed that the spectrum of the  $S_0 \rightarrow S_1$  transition is different from the other two transitions,  $S_1 \rightarrow S_2 \rightarrow S_3$ , in this system.

Oxygen-evolving PS II complexes were extracted from membranes of the cyanobacterium Synechococcus sp., as reported by Schatz and Witt [11], and further purified to yield the SG-1 preparation according to Rögner et al. [1]. The suspension for measurement contained  $4 \cdot 10^{-8}$  M Chl  $a_{II}$  centers, 0.01 M MgCl<sub>2</sub>, 0.5 M mannitol, 0.02 M Mes/NaOH (pH 6.5) and  $6 \cdot 10^{-4}$  M 2,5-dichloro-p-benzoquinone (DCBQ). Due to the unusually high acceptor concentration, the binary oscillations from the acceptor side could be eliminated [10]. Absorption changes were measured with a double-beam spectrophotometer as described in Ref. 13. The dark-adaptation time of the samples was at least 30 min, and the saturating laser flashes were spaced at 500 ms. For the deconvolution procedure of the S states which overlap one another, see Refs. 1, 4 and 10.

Fig. 1 shows the absorption changes at 355 nm of dark-adapted PS II particles from Synechococ-

cus sp. as a function of flash number. From such measurements we determined three extinction coefficient changes indicated in Fig. 1 as  $\Delta\epsilon_{\rm rev}$ ,  $\Delta\epsilon_{\rm irrev}$  and  $\Delta\epsilon_{\rm max}$ ,  $\Delta\epsilon_{\rm rev}$  mainly represents the absorbance decrease due to the  $S_3 \to S_0$  transition and, to a minor extent, a non-oscillating decay from the acceptor side [4,10]. The oscillating amplitude of  $\Delta\epsilon_{\rm rev}$ , which is proportional to the  $O_2$  evolution, was determined by extrapolation, assuming exponential and identical kinetics at all flash numbers (in Fig. 1 the half-time of the decay kinetics was 1.8 ms).  $\Delta\epsilon_{\rm irrev}$  and  $\Delta\epsilon_{\rm max}$  are correlated with  $S_0$ - $S_3$  transitions (for details, see Ref. 10).

Fig. 2 shows the three  $\Delta\epsilon$  values in dependence on the flash number. The best fit of  $\Delta\epsilon_{\rm rev}$  (Fig. 2, top, closed circles) is obtained with a dark S-state distribution of 90%  $S_1$  and 10%  $S_0$ , with 9.3% misses ( $\alpha$ ) and 7.5%) double hits ( $\beta$ ) upon each flash (Fig. 2a, open circles). With these S-state parameters the uncorrected  $\Delta\epsilon_{\rm irrev}$  values can be deconvoluted (Fig. 2, center, closed circles). The best fit is obtained when for the corrected individual values  $\Delta\epsilon_{S_0 \to S_1} = 750 \ {\rm M}^{-1} \cdot {\rm cm}^{-1}$ ,  $\Delta\epsilon_{S_1 \to S_2} = 2350 \ {\rm M}^{-1} \cdot {\rm cm}^{-1}$  and  $\Delta\epsilon_{S_2 \to S_3} = 2450 \ {\rm M}^{-1} \cdot {\rm cm}^{-1}$  are used (Fig. 2, center, open circles).

As discussed in Refs. 9 and 10, the value of  $\Delta\epsilon_{\rm max}$  (Fig. 2, bottom, closed circles) yields further information on the individual extinction coefficient changes of the S-state transitions. The ab-

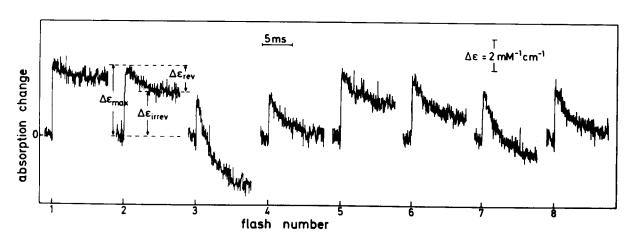



Fig. 1. Time-course of flash-induced absorption changes of dark-adapted PS II complexes from Synechococcus at 355 nm as a function of flash number. The dark time between the flashes was 0.5 s. The concentration of the particles was  $4 \cdot 10^{-8}$  M. The external acceptor was DCBQ ( $6 \cdot 10^{-4}$  M) at pH 6.5. The pattern is the average of 14 measurements.

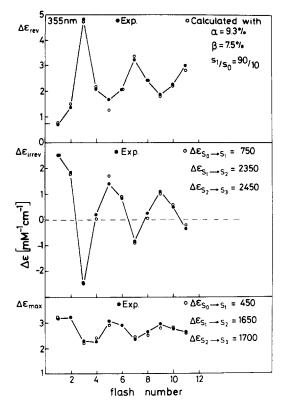



Fig. 2. Molar extinction coefficients  $\Delta \epsilon_{\rm rev}$ ,  $\Delta \epsilon_{\rm irrev}$  and  $\Delta \epsilon_{\rm max}$  corresponding to Fig. 1 as a function of the flash number. Full circles: measured values; open circles: calculated values. Top: the oscillation of  $\Delta \epsilon_{\rm rev}$  is proportional to the  $O_2$  evolution. From the fitting procedure one gets the outlined parameters  $\alpha$ ,  $\beta$  and  $S_1/S_0$ , responsible for the mixing of the S states. Center and Bottom: with the parameters of the mixing, the uncorrected measured  $\Delta \epsilon_{\rm irrev}$  values and  $\Delta \epsilon_{\rm max}$ , respectively (full circles) can be deconvoluted (open circles), if one uses for the individual unmixed  $\Delta \epsilon_{S_n \to S_{n+1}}$  values those that are outlined in the figures.

solute values of  $\epsilon$  depend strongly on the way of reading the numerical data from Fig. 1. Unaffected, however, is the result of the fitting that at 355 nm the changes of the  $S_0 \rightarrow S_1$  transition are again more than 3 times smaller than those of the  $S_1 \rightarrow S_2$  and  $S_2 \rightarrow S_3$  transitions (Fig. 2, bottom, open circles). Similar experiments at 300 nm indicate that here also  $S_0 \rightarrow S_1$  gives rise to a smaller absorption change (not shown). The absorption change of the  $S_0 \rightarrow S_1$  transition should therefore be due to a different process, possibly an Mn(II)  $\rightarrow$  Mn(III) transition as outlined in Ref. 10. Why the difference between the  $S_0 \rightarrow S_1$  and the  $S_1 \rightarrow$ 

 $S_2 \rightarrow S_3$  transitions could not be observed (see also Ref. 8) in spinach PS II preparations [4], and also in preparations of spinach in which interference by a period 2 oscillation from the acceptor side is excluded [14], is not known and will be reinvestigated. The overall structure of the manganese cluster appears to be very similar in high plants and in cyanobacteria [15,16], so that differences in the Mn-oxidation states in the individual S states might not be the reason for the discrepancy.

## Note added in proof

After this report was accepted for publication, LaVergne had published results on the spectroscopic properties of the S states in Ref. 17. He also found that the difference spectrum of  $S_0 \rightarrow S_1$ is different from that of  $S_1 \rightarrow S_2$  and  $S_2 \rightarrow S_3$ . His absorption changes at 355 nm are, however, practically zero; whereas, in this report and in Ref. 10  $\Delta \epsilon (S_0 \rightarrow S_1) \approx 750 \text{ M}^{-1} \cdot \text{cm}^{-1} \text{ (355 nm)}$ . With respect to the  $\Delta \epsilon(S_0 \to S_1)$  values in the whole UV region Saygin and Witt [10] found for  $S_0 \rightarrow S_1$  a very characteristic UV spectrum but smaller than for  $S_1 \rightarrow S_2$  and  $S_2 \rightarrow S_3$ ; whereas LaVergne observed practically no spectral changes in the UV. In Ref. 10 the conclusions were also stronger because, besides the theoretical procedures for deconvoluting overlapping S states used in Ref. 10 as well as in Ref. 17, Saygin and Witt additionally established conditions under which the characteristics of the  $S_0 \rightarrow S_1$  spectrum could be observed without a deconvolution procedure (the  $S_0 \rightarrow S_1$ transition was shifted to the front of the flash train by addition of NH2OH in low concentration).

## References

- Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457-475.
- 2 Pulles, M.P.J., Van Gorkom, H.J. and Willemsen, J.G. (1976) Biochim. Biophys. Acta 449, 536-540.
- 3 Dekker, J.P., Van Gorkom, H.J., Brok, M. and Ouwehand, L. (1984) Biochim. Biophys. Acta 764, 301-309.
- 4 Dekker, J.P., Van Gorkom, H.J., Wensink, J. and Ouwehand, L. (1984) Biochim. Biophys. Acta 767, 1-9.
- 5 Saygin, Ö. and Witt, H.T. (1985) Photobiochem. Photobiophys. 10, 71-82.
- 6 Lavergne, J. (1986) Photochem. Photobiol. 43, 311-318.

- 7 Renger, G. and Weiss, W. (1986) Biochim. Biophys. Acta 856, 184-196.
- 8 Dekker, J.P. and Van Gorkom, H.J. (1987) J. Bioenerg. Biomembr. 19, 125-142.
- 9 Saygin, Ö, and Witt, H.T. (1987) in Progress in Photosynthesis Research (Biggins, J., ed.), Vol. I, pp. 537-540, Martinus Nijhoff, Dordrecht.
- 10 Saygin, Ö, and Witt, H.T. (1987) Biochim. Biophys. Acta 893, 452-469.
- 11 Schatz, G.H. and Witt, H.T. (1984) Photobiochem. Photobiophys. 7, 1-14.
- 12 Rögner, M., Dekker, J.P., Boekema, E.J. and Witt, H.T. (1987) FEBS Lett. 219, 207-211.

- 13 Saygin, Ö, and Witt, H.T. (1984) FEBS Lett. 176, 83-87.
- 14 Dekker, J.P., Ghanotakis, D.F., Plijter, J.J., Van Gorkom, H.J. and Babcock, G.T. (1984) Biochim. Biophys. Acta 767, 515-523.
- 15 McDermott, A., Yachandra, V.K., Guiles, R.D., Britt, R.D., Dexheimer, S.L., Sauer, K. and Klein, M.P. (1987) in Progress in Photosynthesis Research (Biggings, J., ed.), Vol. I, pp. 565-568, Martinus Nijhoff, Dordrecht.
- 16 Aasa, R., Andréasson, L.-E., Lagenfelt, G. and Vänngard, T. (1987) FEBS Lett. 221, 245-248.
- 17 Lavergne, J. (1987) Biochim. Biophys. Acta 894, 91-107.